Простые и сложные высказывания

Например, истинным считаются высказывания: «Если на Солнце есть жизнь, то дважды два равно четыре», «Если Волга — озеро, то Токио — большая деревня» и т. п. Условное высказывание истинно также тогда, когда А ложно, и при этом опять-таки безразлично, истинно В или нет и связано оно по содержанию с А или нет. К истинным относятся высказывания: «Если Солнце — куб, то Земля — треугольник», «Если дважды два равно пять, то Токио — маленький город» и т. п.

В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и еще в меньшей степени как истинные.

Хотя импликация полезна для многих целей, она не совсем согласуется с обычным пониманием условной связи. Импликация охватывает многие важные черты логического поведения условного высказывания, но она не является вместе с тем достаточно адекватным его описанием.

В последние полвека были предприняты энергичные попытки реформировать теорию импликации. При этом речь шла не об отказе от описанного понятия импликации, а о введении наряду с ним другого понятия, учитывающего не только истинностные значения высказываний, но и связь их по содержанию.

С импликацией тесно связана эквивалентность, называемая иногда «двойной импликацией».

Эквивалентность — сложное высказывание «А, если и только если В», образованное из высказываний А и В и разлагающееся на две импликации: «если А, то В», и «если В, то А». Например: «Треугольник является равносторонним, если и только если он является равноугольным». Термином «эквивалентность» обозначается и связка «…, если и только если…», с помощью которой из двух высказываний образуется данное сложное высказывание. Вместо «если и только если» для этой цели могут использоваться «в том и только в том случае, когда», «тогда и только тогда, когда » и т. п.

Если логические связки определяются в терминах истины и лжи, эквивалентность истинна тогда и только тогда, когда оба составляющих ее высказывания имеют одно и то же истинностное значение, т. е. когда они оба истинны и оба ложны. Соответственно, эквивалентность является ложной, когда одно из входящих в нее высказываний истинно, а другое ложно.

Яндекс.Метрика