Как мыслит машина

Когда стали появляться все более совершенные вычислительные машины, производящие миллионы операций в секунду, очень популярным был вопрос: может ли машина мыслить? Не окажется ли в недалеком будущем так, что существенно усовершенствованная вычислительная машина начнет мыслить, как человек, а потом и превзойдет его в сфере мышления? В сфере, считающейся отличительной особенностью человека. Ведь человек, согласно его определению, восходящему еще к античности, — всего лишь разумное животное.

Проблема «машинного мышления» вызывала какое-то время бурные дискуссии, преимущественно в околонаучных кругах. Теперь споры совершенно затихли, хотя иногда люди, далекие от математики и логики, задумываются над вопросом о том, не станет ли с течением времени бурно прогрессирующая вычислительная техника «лучшим мыслителем», чем ее создатель — человек. Во всяком случае в шахматах вычислительные машины проявили себя просто блестяще, и можно с большой долей уверенности предположить, что уже скоро они начнут регулярно обыгрывать лучших гроссмейстеров. В каких еще областях мышления машина может со временем превзойти человека?

Чтобы разобраться с вопросом о «машинном мышлении», нужно более ясно представить, как именно «мыслит» машина и способно ли будет это специфическое «мышление» когда-нибудь составить конкуренцию живому человеческому мышлению. Для этого требуется ввести понятие алгоритма и подробнее рассмотреть проблему ограниченности формализованного доказательства.

Алгоритм — это конечный набор правил, позволяющих чисто механически решить любую конкретную задачу из некоторого класса однотипных задач.

Примерами наиболее простых алгоритмов могут служить алгоритмы сложения, вычитания, умножения и деления целых чисел в арифметике (использующей десятичную систему счисления).

Осуществление алгоритмического процесса может быть передано машине. Благодаря своему быстродействию, она окажется способной решать задачи, недоступные человеку. Но, естественно, только задачи, для решения которых существуют алгоритмы, и никакие иные.

Потенциальная возможность передать машине осуществление алгоритмических процедур существенно стимулировала разработку математической теории алгоритмов. Первоначально недостаточно ясное понятие «алгоритма» было уточнено с помощью таких понятий, как «рекурсивная функция», «машина Тьюринга», «нормальный алгоритм» и др. Со временем теория алгоритмов легла в фундамент вычислительной науки и техники, сделалась основой машинного решения математических задач, моделирования сложных процессов и автоматизации производства и управления.

Алгоритм представляет собой систему правил (предписаний) для эффективного решения некоторого класса однотипных задач.

Предполагается, что алгоритм обладает свойствами массовости, детерминированности и результативности. Массовость означает, что данные задач могут в определенных пределах изменяться. Алгоритм связан с решением общей проблемы, в условия которой входят варьирующиеся параметры. Ответ «да» или «нет» на проблему дается не прямо, а косвенно, в зависимости от значений параметров, в общем случае допускающих счетно-бесконечное множество значений. Точное описание алгоритма предполагает указание на множество возможных значений параметров проблемы, т. е. тех частных вопросов, на которые она распадается. Детерминированность алгоритма выражается в том, что, когда заданы алгоритм и значения параметров, или, иначе говоря, выбран частный случай проблемы, процесс решения идет чисто формально (механически) и во всех деталях известны последовательность и содержание конкретных шагов работы алгоритма. Алгоритмический процесс изолирован от воздействия извне, так что детерминированность исключает возможность произвольных решений. Именно эта особенность алгоритма делает его синонимом автоматически работающей машины. Результативность алгоритма означает, что на каждом шаге процесса применения правила известно, что считать его результатом.

Стили руководства в системах управления

Яндекс.Метрика