Логические законы как тавтологии

Автор этого рассказа ни слова не говорит о том, как удавалось компании «Последняя возможность» перебрасывать своих клиентов из одного возможного мира в другой. Пожалуй, это вообще не допускает сколько-нибудь правдоподобного объяснения, даже в фантастическом рассказе.

Ведь возможные миры — это только мыслимые миры, они подобны тем вариантам вероятного и не очень вероятного хода событий, которые мы нередко перебираем в своем уме, отыскивая тот единственный из них, который произойдет на самом деле. Или, в духе Лейбница, это все те же варианты жизни человека и мира, которые пронеслись перед мысленным взором бога, прежде чем он остановил свой выбор на наилучшем из них и сделал его существующим. Множество возможных миров — это просто бесконечное множество мыслимых возможностей, из которых только одна способна реализоваться в действительности.

Широко используемые в современной логике «семантики возможных миров» опираются на идею множества таких миров. Эти семантики являются стандартным средством для раскрытия значения модальных понятий, и в частности понятия логической необходимости.

Истинное утверждение правильно описывает положение дел в действительном мире. В другом возможном мире это же утверждение может оказаться ложным. В нашем мире снег бел и металлы расширяются при нагревании. В каких-то мирах этого нет, и утверждения «Снег бел» и «Металлы расширяются при нагревании» являются ложными. Об этих утверждениях, истинных в действительном мире и способных быть ложными в каком-то из возможных миров, говорят, что они случайно истинны: они обязаны своей истинностью своеобразному устройству отдельного мира.

Есть, однако, утверждения, истинные не только в реальном, но и во всех возможных мирах вообще. Они представляют собой необходимые истины: нет такого мира, в котором они не выполнялись бы и сопоставлением с которым их удалось бы опровергнуть. Например, как бы ни был устроен произвольно взятый мир, в нем либо идет дождь, либо дождя нет. В этом мире не может быть также ситуации, когда в одно и то же время и в одном и том же месте дождь идет и вместе с тем не идет. Это означает, что утверждения «Дождь идет либо не идет» и «Неверно, что дождь идет и не идет», являющиеся частными случаями уже рассматривавшихся законов исключенного третьего и противоречия, представляют собой необходимые истины.

Научные законы принадлежат к случайным истинам, поскольку относятся только к реальному миру. Они верны для любых его пространственно-временных областей. Но их универсальность не простирается на иные возможные миры, где они могут оказываться ложными. Истины же логики, ее законы являются необходимыми истинами, справедливыми во всех мирах, включая, разумеется, и действительный. К необходимым истинам этого же рода нередко относят и законы математики.

Теория возможных миров — даже в этом упрощенном и схематичном ее изложении — является хорошим средством для прояснения смысла логической необходимости.

Один из принципов логики говорит, что если утверждение логически необходимо, то оно истинно. В терминах возможных миров это положение перефразируется так: если утверждение истинно в каждом из миров, оно истинно и в действительном мире. Очевидно, что это так, поскольку последний является одним из возможных миров.

Сходным образом обосновываются и другие положения, касающиеся свойств логической необходимости и раскрывающие ее содержание.

Яндекс.Метрика