Понятие доказательства

Как правило, доказательство широко понимается и в обычной жизни. Для подтверждения выдвинутой идеи активно привлекаются факты, типичные в определенном отношении явления и т. п. Логического вывода в этом случае, конечно, нет, тем не менее предлагаемое обоснование называют «доказательством».

Широкое употребление понятия доказательства само по себе не ведет к недоразумениям. Но только при одном условии: нужно постоянно иметь в виду, что обобщение, переход от частных фактов к общим заключениям дает не достоверное, а лишь правдоподобное знание.

Многие наши утверждения не являются ни истинными, ни ложными.

Оценки, нормы, правила, советы, требования и т. п. не описывают рассматриваемую ситуацию. Они указывают, какой она должна стать, в каком направлении ее нужно преобразовать. От описаний мы вправе требовать, чтобы они являлись истинными. Но удачный приказ, совет и т. д. мы характеризуем как эффективный, целесообразный, но не как истинный.

В стандартном определении понятия доказательства всегда используется понятие истины. Доказать некоторый тезис — значит логически вывести его из других являющихся истинными положений. Но есть утверждения, не связанные с истиной. Очевидно также, что, оперируя ими, можно и нужно быть и логичным, и доказательным. Возникает, таким образом, вопрос о существенном расширении понятия доказательства. Им должны охватываться не только описания, но и утверждения типа оценок, требований, идеалов норм и т. п. Задача переопределения понятия доказательства успешно решается современной логикой. Такие ее разделы, как логика оценок и логика норм, убедительно показывают, что рассуждения о ценностях также подчиняются требованиям логики и не выходят за сферу логического.

Предварительно можно определить доказательство как логическое выведение следствий из обоснованных посылок.

Неясность понятия доказательства связана и с тем, что не существует какого-то единого, так сказать «природного», понятия логического следования. Логических систем, претендующих на определение этого понятия, в принципе бесконечно много, но ни одно из имеющихся в современной логике определений логического закона и логического следования не свободно от критики.

Образцом доказательства, которому стремятся следовать во всех науках, является математическое доказательство. Долгое время считалось, что оно представляет собой ясный и бесспорный процесс. В прошлом веке отношение к математическому доказательству изменилось, математики разбились на группы, каждая из которых придерживалась своего истолкования доказательства. Исчезла уверенность в единственности и непогрешимости лежащих в основе доказательства логических принципов. Полемика по поводу математического доказательства показала, что нет критериев доказательства, не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто использует эти критерии. Математическое доказательство представляет собой парадигму доказательства вообще, но даже в математике доказательство не является абсолютным и окончательным. «Нельзя не признать, — пишет математик М. Клайн, — что абсолютное доказательство не реальность, а цель. К ней следует стремиться, но, скорее всего, она так никогда и не будет достигнута. Абсолютное доказательство не более чем призрак, вечно преследуемый и вечно ускользающий. Мы должны неустанно укреплять то доказательство, которым располагаем, не надеясь на то, что нам удастся довести его до совершенства».

Яндекс.Метрика