Понятие доказательства

Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее даже в серьезных рассуждениях доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение нужно доказывать и т. п.

Подробнее...

Прямое и косвенное доказательства

Немецкий философ А. Шопенгауэр считал математику довольно интересной наукой, но не имеющей никаких приложений, в том числе и в физике. Он даже отвергал саму технику строгих математических доказательств. Шопенгауэр называл их мышеловками и приводил в качестве примера доказательство известной теоремы Пифагора. Оно является, конечно, точным: никто не может считать его ложным. Но оно представляет собой совершенно искусственный способ рассуждения. Каждый шаг его убедителен, однако к концу доказательства возникает чувство, что вы попали в мышеловку. Математик вынуждает вас допустить справедливость теоремы, но вы не получаете никакого реального ее понимания. Это все равно, как если бы вас провели через лабиринт. В конце концов вы выходите из лабиринта и говорите себе: «Да, я вышел, но не знаю, как здесь очутился».

Подробнее...

Ошибки в доказательстве

Логику редко изучают специально. Навыки логичного, т. е. последовательного и доказательного мышления формируются и совершенствуются в практике рассуждений. Но, как заметил английский философ Ф. Бэкон, упражнения, не просветленные теорией, с одинаковым успехом закрепляют как правильное, так и ошибочное. Неудивительно поэтому, что ошибки в доказательствах — вещь довольно обычная.

Подробнее...

Яндекс.Метрика